Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils
نویسندگان
چکیده
Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)-0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter.
منابع مشابه
Predominant but Previously-overlooked Prokaryotic Drivers of Reductive Nitrogen Transformation in Paddy Soils, Revealed by Metatranscriptomics
Waterlogged paddy soils possess anoxic zones in which microbes actively induce reductive nitrogen transformation (RNT). In the present study, a shotgun RNA sequencing analysis (metatranscriptomics) of paddy soil samples revealed that most RNT gene transcripts in paddy soils were derived from Deltaproteobacteria, particularly the genera Anaeromyxobacter and Geobacter. Despite the frequent detect...
متن کاملMetatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ.
Ectomycorrhizal (EM) fungi form symbiotic associations with plant roots that regulate nutrient exchange between forest plants and soil. Environmental metagenomics approaches that employ next-generation sequencing show great promise for studying EM symbioses; however, metatranscriptomic studies have been constrained by the inherent difficulties associated with isolation and sequencing of RNA fro...
متن کاملSpecies Diversity of Trees and Forest Floor Plants in Oriental beech Forest Types of Shastkalate Educational and Research Forest, Gorgan)
Trees are the most important biological elements of forest ecosystems. The variability of the tree species composition inhabiting in the Oriental beech forest, not only forms different forest types but also has a remarkable impact on the species diversity of forest floor plants, due to the existence of trees in the overstory layer. In this research, forest types of an an Oriental beech were ide...
متن کاملThe impact of fire on the forest and plants diversity in Iranian Oak forest
Fire, as a natural ecological disturbance factor in forest, this study located in the Marivan region, Northern Zagros forest, and western Iranian state of Kurdistan. In each burned and unburned area 30 circle sample plot (1000 m2) were collected by randomized–systematic method in the 100×200 m net (in total 60 plots). In every sample plot the kind of species, number of tree, the heig...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کامل